Seismic Risk to Transport Infrastructure in the Kyrgyz Republic

27 October 2017, Ground Related Risk to Transportation Infrastructure

Yannis Fourniadis¹, Matthew Free¹, Thomas Ader¹, Katherine Coates¹, Luis Sousa², Kevin Fleming³, Massimiliano Pittore³, Bolot Moldobekov⁴ and Cholponbek Ormukov⁴

¹Arup, 13 Fitzroy Street, W1T 4BQ, London, UK
²AIR Worldwide, London, UK
³German Research Centre for Geosciences (GFZ), Potsdam, Germany
⁴Central Asian Institute for Applied Geosciences (CAIAG), Bishkek, Kyrgyz Republic

ARUP

Scope of Work for the Project

Exposure Model

Hazard and Risk Calculations Risk Management Strategy

Hazard and Risk Communication

- 1. Determination of seismic hazards.
- 2. Development of transport infrastructure exposure model.
- 3. Calculating seismic hazard and risk for buildings and **transport infrastructure**.
- 4. Development of a seismic risk management strategy.
- 5. Communication of the seismic hazard and risk results.

Impact of Earthquakes to Kyrgyz Republic

Several destructive earthquakes have struck the Kyrgyz Republic in the last 150 years, with dozens of fatalities and hundreds of million USD of damages

Nura Earthquake (Mw=6.6)

The Mw = 6.6 Nura earthquake (5 October 2008) resulted in 74 deaths (including 43 children).

References: Secretariat of the United Nations (2010) In-depth Review of Disaster Risk Reduction in the Kyrgyz Republic; CAIAG (2009) The Atlas of Earthquakes in Kyrgyzstan.

Damage to Transport Infrastructure from Earthquakes

Damage to roads is associated with permanent ground deformations (PGD), which are mainly caused by liquefaction, and other earthquake-related phenomena (landslides, lateral spreading, surface fault ruptures)

Damage to roads from surface seismic waves (left) and from debris slides (right) as a result of the Nura earthquake (2008)

Transport Infrastructure - Bridges Exposure

Site inspection of Kyrgyz bridges in May 2015 – Mostly concrete simply supported structures

Damage to bridges is a function of peak ground acceleration (PGA), and depends on material type, complexity of the structure and the local ground conditions

Earthquake Catalogue

The catalogue includes more than 3,000 earthquakes of moment magnitude greater than 4.5 that occurred between 250 BCE and 2014.

Scenario Earthquakes for Risk Assessment

Ten scenario earthquakes were chosen on well-characterised, active geological faults, that could rupture near population centres

Selected Scenario Earthquakes

No.	Name	Magnitude (Mw)	Dip (degree)	Rake (degree)	Type of faulting	Type of modelling
1	Issyk Ata	7.3	21	50	Thrust	Linear simple fault
2	Chillik	8.3	60	170°	Strike-slip	Multiple plane rupture
3	Kemin	7.8	60°	50°	Thrust	Multiple plane rupture
4	Ferghana Valley	7.5	50	100	Thrust	Multiple plane rupture
5	South Kochkor	6.8	50	50	Thrust	Linear simple fault
6	Akchop Hills	6.7	9	50	Thrust	Linear simple fault
7	Telek Karakhudzhur	6.8	30	50	Thrust	Linear simple fault
8	Oinik Djar	7.0	29	50	Thrust	Linear simple fault
9	Talas Ferghana	7.8	70	170	Strike-Slip	Linear simple fault
10	Alai Pamir	7.2	40	50	Thrust	Linear simple fault

Issyk-Ata Fault Earthquake Scenario (Mw = 7.3)

Maps of distribution of ground shaking amplitude in terms of Peak Ground Acceleration (PGA).

High PGA values of around
0.5g can be expected at the
capital city of Bishkek as a
result of ground shaking from
this scenario earthquake.

Ferghana Valley Fault Earthquake Scenario (Mw = 7.5)

Ferghana Valley Fault earthquake scenario Magnitude Mw = 7.5.

Maps of distribution of ground shaking amplitude in terms of Peak Ground Acceleration (PGA).

Very high PGA values of around 1g can be expected at the city of Jalal-Abad as a result of ground shaking from this scenario earthquake.

GFZ

Helmholtz Centre

POTSDAM

N٧

CAIAG

GLOBAL FARTHOUAKE MODE

working together to assess risi

ARUP

Transport Infrastructure - Roads Exposure

From OpenStreetMap database of roads in the Kyrgyz Republic Roads total value: 33 billion USD

Transport Infrastructure - Bridges Exposure

From OpenStreetMap database of bridges in the Kyrgyz Republic Bridges total value: 500 million USD

Helmholtz Centre

CAIAG

GLOBAL EARTHQUAKE MODEL

working together to assess risk

Fragility and Vulnerability of Roads

Fragility functions for urban and major roads in terms of permanent ground deformation (PGD) (FEMA, 2003)

Damage-to-loss model for roads (FEMA, 2003)

Typology	Damage state	Damage Ratio*				
2 traffic lanes (urban	Minor	0.05				
roads)	Moderate	0.20				
	Extensive/complete	0.70				
≥ 4 traffic lanes (major	Minor	0.05				
roads)	Moderate	0.20				
	Extensive/complete	0.70				
*Ratio between attained loss for a specific damage state and the						

E.g., permanent ground deformations (PGD) of 0.5m would cause 10% loss of the value of the major road segment that experiences that amount of deformation, and 35% loss of the value of the urban road segment that experiences that amount of deformation

Vulnerability functions for urban and major roads

Helmholtz Centre

POTSDAM

ARUP

(0

CAIAG

GLOBAL FARTHOUAKE MODEL

working together to assess risk

Reference: FEMA (2003) HAZUS-MH Technical Manuals. Federal Emergency Management Agency, Washington, D.C.

Fragility and Vulnerability of Bridges

Damage-to-loss model for bridges (FEMA, 2003)

Bridge type	Damage state	Damage Ratio				
Steel, concrete or "other"	Minor damage	0.01				
	Extensive/complete	2/n*				
*where n is the number of spans. If n≤2, a damage ratio of 1.00 shall be applied.						

E.g., peak ground acceleration (**PGA**) of **0.5g** would cause **15% loss** of the value of a **concrete bridge** that experiences that amount of acceleration, and **20% loss** of the value of a **steel bridge** that experiences that amount of acceleration

Vulnerability functions for bridges

GFZ

Helmholtz Centre

POTSDAM

GLOBAL EARTHQUAKE MODE

working together to assess risk

CAIAG

ARUP

Reference: FEMA (2003) HAZUS-MH Technical Manuals. Federal Emergency Management Agency, Washington, D.C.

Loss Results for Bridges

GFZ

Helmholtz Centre

ARUP

0

GLOBAL EARTHQUAKE MODEL working together to assess risk

MM

CAIAG

Error bars represent the mean plus and minus one standard deviation.

Loss Results for Roads

GFZ

Helmholtz Centre

CAIAG

GLOBAL EARTHQUAKE MODEL working together to assess risk ARUP

Issyk-Ata Scenario Risk Results – Roads and Bridges

Spatial distribution of mean loss ratios (ratio between attained loss and total value of the road or bridge segment), considering a V_{s30} distribution obtained from USGS.

Economic Losses roads: 0.9 to 1.1 billion USD Economic Losses bridges: 20 to 25 million USD

Ferghana Valley Scenario Risk Results – Roads and Bridges

Spatial distribution of mean loss ratios (ratio between attained loss and total value of the road or bridge segment), considering a $V_{\rm S30}$ distribution obtained from USGS

Economic Losses roads: 0.7 to 1.0 billion USD Economic Losses bridges: 15 to 17 million USD

Disaster Risk Reduction in the Kyrgyz Republic aligned with the Sendai Framework

Sendai Framework for Disaster Risk Reduction Strategy 2015 -2030

Reduce loss of life

Reduce the number of affected people

GOALS

Improve regional and international cooperation

Increase resilience to reduce damage & disruption

Communication of risk

Understanding risk

PRIORITIES

Strengthening disaster risk governance

Investing in risk reduction measures for improved resilience

Enhancing disaster risk preparedness

Seismic Risk Reduction Strategy Recommendations from this Project with Ongoing Programmes in the Kyrgyz Republic

- State Program 'Seismic Safety in the Kyrgyz Republic in the years 2012-2019'.
- 'Country Development Programme for the Kyrgyz Republic' includes DRR.
- Ongoing capacity building programmes in awareness of seismic risk and earthquake preparedness for communities.
- '2016 2030 Strategy of the Emergencies Protection of the Kyrgyz Republic' in development.

Risk Reduction Recommendations – Roads and Bridges

- Establish **database** of **critical roads** and **bridges**.
- Perform **detailed assessments** for critical bridges.
- Update seismic risk management strategy for bridges to inform prioritized replacements and retrofits.
- Perform **road network analyses** to identify critical roads and where redundancy is required.
- **Increase funding** for stakeholders and action.

From scenario earthquake results, expected losses of: 100 million to 1.1 billion USD/year for Roads 3 to 26 million USD/year for Bridges

Example for a critical bridge near Osh for emergency response.

CAIAG

GFZ

Helmholtz Centre

ARUP

Communication of Risk and its Various Components

GEM GFZ ARUP

1.75 3.50

SEZ ARUP

GEH

GEDRR GEDRAR

Thank you!

